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ABSTRACT AND LIST OF KEY WORDS

This document contains the abort and malfunctioned flight
analysis conducted for the Saturn V AS-507 launch vehicle.
The effects of various failure modes on S-I1C, S-II, and
S-IVB flight are evaluated in terms of abort criteria,
mission completion capability, and communications and
tracking surveillance.
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SECTION 1
SUMMARY

This document contains the ‘results of malfunctioned flight
and abort analysis for the AS-507 G mission. The G mission
is a lunar landing mission with launch scheduled for the
September-October launch window.

Analysis results reported in this document include the
following:

a. Evaluation of the operational effectiveness of the
Emergency Detection System (EDS) automatic and manual

abort limits to provide crew safety and minimize false
aborts

b. Vehicle dynamic and structural load responses, regions
of controllability, and trajectory envelopes resulting
from vehicle malfunction

c. Vehicle capability to achieve the performance plateaus
defined by launch vehicle mission requirements - earth
parking orbit, translunar injection, and a 75 nautical
mile contingency orbit

d. Verification of LVDC flight program presettings for
malfunctioned flight

€. An evaluation of the surveillance network's capability
to provide adequate tracking and communications during
malfunctioned flight,

The AS-507 G mission analysis is similar to that for the
AS-506 G mission, reported in Reference 1, with the
following major differences: ’

a. The EDS rate limit between 120 seconds and S-IC OBECO
is changed from 4 degrees per second to 10 degrees
per second.

b. The setting for the overrate light between 120 seconds
and 134 seconds is changed from 4 degrees per second to
10 degrees per second.

c. The effects of the S-IC Automatic Abort Cutoff (AACO)
logic following dual adjacent engines out after CECO
are evaluated in detail.

d. The analysis is expanded to evaluate the effects of
single-axis platform failures for various failure rates
and accelerations.
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SUMMARY (Continued)

e. The effects of accelerometer failures coupled with thrust
misalignments and failures across various launch windows
are evaluated.

Significant results derived from this analysis are summarized
in the following paragraphs.

1.1 MALFUNCTION DYNAMICS

Malfunction dynamics for the AS-507 are essentially the same
as for AS-506, in spite of increased winds. Times during
which loss of control occurs are approximately the same for
AS-507 as for AS-506. Control is maintained for adjacent
simultaneous S-IC engine failures occuring after 135 seconds.
This is due to all engines being shut down when any two adja-
cent control engines are out after 135 seconds. Loss of con-
trol in S-II, however, can result from sequential S-IC
adjacent engine failures where the second engine fails before
approximately 150 seconds.

Spacecraft loads after engine-out are slightly increased for
AS-507 because of higher winds but remain below structural
limits for all flight times.

A summary of vehicle controllability for all types of mal-
functions in all stages is shown in Figures 1-1 through 1-8.

1.2 CREW SAFETY

Periods of possible crew loss for AS-507 are essentially the
same as for AS-506.

These periods occur only for short time intervals during S-IC
flight and are the result of a single engine out, an actuator
hardover, or a saturated error signal. No other malfunctions
considered cause crew loss.

The crew loss criticalities for these three malfunctions,

as well as the flight times during which e¢rew loss can occur,
are shown in Figure 1-2. Probability of crew loss due to
catastroghic S-IC engine failure remains unchanged at

61 X 107°,

1.3 PERFORMANCE
Predicted malfunctioned flight performance summarized in

Figure 1-8 for AS-507 indicates generally improved POI/TLI
capability over AS-506 for propulsion failures. TLI may

1-2
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SUMMARY (Continued)

be achieved with an S-IC single engine out approximately 15
seconds prior to that predicted for AS-506. TLI may be achieved
with an S-II single engine out 30 seconds prior to that pre-
dicted for AS-506. Improvement for other propulsion failures
ranges from 5 to 15 seconds. Parking orbit capability exists
for any S-IC adjacent control engine failure occuring after
approximately 150 seconds. Capability to achieve an orbit
greater than 75 NMI perigee for accelerometer failures is un-
changed from that predicted for AS-506, except for X-axis
accelerometer failures with 3-sigma high and low performing
vehicles. The earliest 3-sigma high failure time to 75 NMI
perigee orbit has been extended from 110 seconds from first
motion for AS-506 to 135 seconds for AS-507. The 3-sigma low
time has been extended from 0.0 second to 30 seconds.

A summary of AS-507 POI/TLI capability for engine out and
early staging is given in Figure 1-8 and for accelerometer
failures in Figure 1-9.

Improvement in propulsion malfunction performance is due to
the steeper trajectory profile for AS-507 during S-IC and the
first portion of S-II burn; this results in a higher altitude
for the same failure time. The AS-507 into-orbit pitch pro-
file differs from the AS-506 pitch profile and results in
lower perigees for X-accelerometer failures with the present
presettings.

1.4 TRACKING AND COMMUNICATIONS
The communications and tracking analysis indicates that the

geometrical coverage for malfunctioned flight is comparable
to that for nominal flight.
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SECTION 2
EMERGENCY DETECTION SYSTEM DESCRIPTION

The Saturn Vv Emergency Detection System (EDS) is designed to
provide crew safety in the event of malfunctioned flight. The
system monitors critical flight parameters and furnishes advance
warning of impending emergency conditions. If abort is required,
it is initiated either automatically or manually depending on

the nature and time of the malfunction,

In the following paragraphs, the EDS system is described in
terms of EDS displays, EDS controls, abort controls, and abort
modes.

2.1 EMERGENCY DETECTION SYSTEM DISPLAYS

The EDS displays are selected to present parameters which
indicate failures leading to vehicle abort. Automatic abort
parameters are implemented triple redundant, voted two-out-of-
three, to preclude single point hardware or sensing failures
causing an inadvertant abort. Manual abort parameters are
implemented with redundant sensing and displays to provide
highly reliable indications to the crew,

Displays are designed to provide onboard detection capability
for rapid rate malfunctions which may require abort. Pilot
abort action must be based on two separate but related abort
cues. These cues may be derived from the EDS displays, ground
information, physiological cues, or any combination of two

valid cues. The EDS displays and controls referred to through-
out this document are shown in Figure 2-1. As each is discussed,
it is identified by use of grid designators listed on the border
of the figure.

2.1.1 Flight Director Attitude Indicator (FDAI)

There are two Flight Director Attitude Indicators, each of
which provides a display of Euler attitude, attitude errors
and angular rates. These displays are active at liftoff and
remain active throughout the mission, except that attitude
errors are not displayed during S-II and S-IVB flight. The
FDAI's are used to monitor normal launch vehicle guidance and
control events. The pilot's FDAI is shown in Figure 2-1, I-9,

The FDAI ball displays the Euler attitudes, the needle type
pointers across the face of the ball indicate attitude errors,
and the triangular pointers around the periphery of the ball
display angular rates.

2-1
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2.1.1 (Continued)

Signal inputs to the FDAI's are switch selectable and can come
from a number of different sources in the spacecraft. This
flexibility and redundancy provide the required attitude and
error backup display capability.

2,1.2 LV ENGINES Lights

Each of the five LV ENGINES lights shown in Figure 2-1, J-12,
represents the respective numbered engine on the operating
stage. A light ON indicates its corresponding engine is
operating below a nominal thrust level (90 percent on F-1
engines and 65 percent of J-2 engines). During staging all
lights are turned OFF momentarily to indicate physical
separation has occurred.

2.1.3 LV RATE Light

The LV RATE light (Figure 2-1, I-12) when ON, is the primary
cue from the launch vehicle that the following preset over-
rate settings have been exceeded:

Pitch/Yaw 4.0 (20.5) deg/sec Liftoff to automatic
abort deactivation
(120 seconds)

9.2 (+0.8) deg/sec Automatic abort
deactivation to
S-IVB cutoff

Roll 20.0 (+0.5) deg/sec  Liftoff to S-IVB
cutoff.

In the event the LV GUID light is illuminated during the auto-
matic abort phase, the LV RATE light will be illuminated as a
redundant indicator.

2.1.4 LV GUID Light

Launch vehicle attitudes are measured and provided to the
launch vehicle digital computer every 40 milliseconds. The
computer checks the attitude for reasonableness. If the
reasonableness tests fail, the attitude error signals to the
flight control computer are frozen and the LV GUID light,
shown in Figure 2-1, I-12, is illuminated.
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2.1.5 ABORT Light

The ABORT light, shown in Figure 2-~1, G-12, may be illuminated
by ground command from the Flight Director, the Mission Control
Center (MCC) Booster Systems Engineer, the Flight Dynamics
Officer (FDO), the Complex 39 Launch Operations Manager (until
tower clearance +10 seconds), or in conjunction with range
safety booster engine cutoff.

2.1.6 Angle-of-Attack Meter

The angle-of-attack (qa) meter, shown in Figure 2-1, L-8, is
time shared with the Service Propulsion System (SPS) chamber
pressure. The goa display is a pitch and yaw vector summed
angle-of-attack/dynamic pressure product. It is expressed in
percentage of total pressure for predicted launch vehicle
breakup (abort limit equals 100 percent). It is effective as
an abort parameter only during the high q flight region. During
other portions of boost through the atmosphere, the gg meter
provides trend information on launch vehicle flight performance
and provides a secondary cue for slow-rate guidance and control
malfunctions.

2.1.7 Accelerometer

The accelerometer, shown in Figure 2-1, H-6, indicates longi-
tudinal acceleration/deceleration in G's. It provides a
secondary cue for certain engine failures and is a gross indi-
cator of launch vehicle performance.

2.1.8 Event Timer

The event timer, shown in Figure 2-1, H-12, is a digital clock
which displays time from liftoff. It is a critical display
because it is the primary cue for the transition of abort modes,
manual sequenced events, monitoring roll and pitch program,
staging, and S-IVB insertion cutoff.

The event timer is reset to zero automatically with abort initia-
tion.

2,2 EMERGENCY DETECTION SYSTEM CONTROLS

The main EDS control switches are the EDS, the 2 ENG OUT, and
the LV RATES. They are two-position (AUTO and OFF) toggle
switches which are placed in the AUTO position prior to
liftoff. When all three switches are in the AUTO position,
automatic abort is initiated if:

a. A LV structural failure occurs between the Instrument Unit

and Command Service Module.
b. Two or more S-IC engines drop below 90 percent thrust.

2-4
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2.2 (Continued)
C. LV rates exceed the EDS limits.

While these switches can be manually disabled at any time by
placing them in the OFF position, the normal procedure requires
disabling at 120 seconds. They are automatically disabled by
the LV sequencer just prior to center engine cutoff.

2.3 ABORT CONTROLS

The translational controller (T-Handle) mounted on the left
arm of the commander's couch is used to initiate abort. A
manual Launch Escape System (LES) abort seqguence is initiated
by rotating the T-Handle fully counterclockwise. This sends
redundant engine cutoff commands to the LV, initiates Command
Module/Service Module separation, fires the LES motors, resets
the spacecraft sequencer and initiates the post abort sequence.
(Engine cutoff from the spacecraft is inhibited during the
first 30 seconds of flight).

For a manually initiated SPS abort after the Launch Escape
Tower has been jettisoned, counterclockwise rotation of the
T-Handle commands LV cutoff, resets the spacecraft sequencer
and initiates the Command Service Module/Launch Vehicle
separation sequence. However, returning the T-Handle to
neutral before 3 seconds expires results in only a LV cutoff
rather than the full abort sequence.

2.4 ABORT MODES

Aborts during boost are performed using either the LES or the
SPS.

2.4.1 LES Aborts (Modes 1A, 1B, and 1C)

The LES consists of a solid propellant launch escape motor
used to propel the CM a safe distance from the launch vehicle,
a tower jettison motor, and a canard subsystem. LES abort
modes are as follows:

a. Mode 1A: Low Altitude Mode (Pad to 42 Seconds)

In Mode 1A a pitch control motor, mounted normal to
the launch escape motor, propels the vehicle downrange
to ensure water landing and escape from the "fireball."
The automatic sequence of major events following abort
initiation is as follows: )
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2.4.1 (Continued)

Time Event

00:00 Abort, SM Reaction Control System
(RCS) Oxidizer Rapid Dump, Launch
Escape & Pitch Control Motors Fire

00:05 RCS Fuel Rapid Dump

00:11 Canards Deploy

00:14.4 Apex Cover Jettison

00:16 Drogue Deploy

00:28 Main Chute Deploy

The automatic sequence can be prevented, interrupted, or
replaced by crew action.

b. Mode 1B: Medium Altitude Mode (42 Seconds to 100,000 Feet)

Mode 1B is essentially the same as Mode 1A with the ex-
ception of deleting rapid RCS propellant dump and PC motor
fire. The canard subsystem is designed specifically for
this altitude region to initiate a tumble in the pitch
plane. Upon closure of barometric switches at 24,000
feet, the tower is jettisoned. The main parachutes are
automatically deployed at 10,000 feet.

c. Mode 1C: High Altitude Mode (100,000 Feet to Tower
Jettison)

During Mode 1C the launch vehicle is above the atmosphere
and therefore the canard subsystem cannot be used to
induce a pitch rate to the escape vehicle. If the launch
vehicle is stable at abort, the LET is manually jettisoned
and the CM oriented to the reentry attitude. This method
requires a functioning attitude reference system.

With a failed attitude reference system the alternate
method is to introduce a 5 degree per second pitch rate
using the attitude control thrusters. The CM/tower com-
bination will then stabilize blunt end forward as in

Mode 1B. The LES then deploys the parachutes at the proper
altitude.

2.4.,2 SPS Aborts (Modes II, III, and IV)

The SPS aborts utilize the Service Module SPS engine to propel
the CSM combination away from the launch vehicle, maneuver for
reentry to a planned landing area, or boost into a contingency
orbit. The SPS abort modes are as follows:
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2.4.2 {Continued)

a.

Mode II

The SM Reaction Control System engines are used to propel
the CSM away from the launch vehicle unless the vehicle is
in danger of exploding or excessive tumble rates are pre-
sent at LV/CSM separation. In these two cases the SPS
engine would be used due to greater AV and attitude con-
trol capability. When at a safe distance, the CM is
separated from the SM and maneuvered to a reentry attitude.

Mode III

The SPS engine is used to slow the CSM combination so as
to land at a predetermined point in the Atlantic Ocean.
CM/SM separation then occurs and normal reentry procedures
follow.

Mode 1V

The SPS engine can be used to make up for a deficiency in
insertion velocity up to approximately 3000 feet per
second. This is accomplished by holding the CSM in an
inertial attitude and applying the needed AV with the
SPS to acquire the acceptable orbital velocity.

2-17
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SECTION 3
MALFUNCTION ANALYSIS CRITERIA
Malfunction analysis criteria consists of:

a. Abort criteria
b. Crew, vehicle, and mission loss criteria
c. Abort cues and EDS limits

3.1 ABORT CRITERIA

Abort criteria are those criteria which are used to establish
the need for abort in the event of a vehicle malfunction. The
criteria are:

a. Launch platform interference, pad fallback, and tower
collision.

b. Controllability

c. Structural capability

d. Range gafety limits

e. Staging limits

£. Spacecraft heating limit
g. Platform yaw gimbal limit
h. Safe abort limits

Conditions for a safe abort must satisfy the following re-
guirements and limits:

a. Water impact

b. Abort lead time requirements (Figure 3-1)
c. LEV o-limit

d. l6g reentry limit

e. 100 second free fall limit

f. Spacecraft platform tumble limit (90 degrees yaw)

3.2 CREW, VEHICLE, AND MISSION LOSS CRITERIA

3.2.1 Crew Loss

Crew loss is assumed to occur if the abort lead time is less than
the required lead time, or if 90 degrees yaw attitude occurs dur-
ing abort. Abort lead time requirements during S-IC flight are
taken from Reference 8 and shown in Figure 3-1.

Crew loss factors (B's) are calculated as follows:

_ (Trosg) (Pross)
STAGE FLIGHT TIME

(A

3-1
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3.2.1 (Continued)
where: AT = time interval in which crew loss occurs
LOSS . .

due to a particular malfunction

P = probability that the particular malfunction
LOSS N : \ : !
will cause crew loss; i.e., if, considering
single engine failures in S-IC, any control
engine failure causes crew loss, then
P g = 4/5; or if only a particular engine
c%gges loss of control, then PLOSS = 1/5

In case of crew loss B's, it is assumed that the probability
of an explosion within one second following breakup is 0.2,

Criticality numbers are calculated as follows:
CN = B . UN

where UN (unreliability) is defined as the probable number of
oOccurrences of a failure mode per one million flights,

A detailed explanation of loss factor determination is given
in Reference 2. Unreliability values used in this analysis
are given in References 3 and 4,

3.2.2 Vehicle Loss

Vehicle loss is assumed to occur if the vehicle or spacecraft
structural capability is exceeded before the vehicle or prayload
achieves at least a 75 NMI perigee orbit. Situations causing
structural failure are:

a. Vehicle collision with a solid object, e.g., liftoff
interference with launch platform and holddown posts,
tower collision, pad area fallback, and collision be-
tween separating stages following staging.

b. EXcessive aerodynamic forces due to loss of control or
trajectory deviations which lead to atmospheric re-
entry.

c. Structural dynamic response following a malfunction and

abort cutoff.

Vehicle loss factors are calculated in the same manner as
crew loss factors.
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3.2.3 Mission Loss

Launch vehicle primary mission loss is assumed if, at TLI
plus 3 hours, a AV correction greater than 800 feet per second
is required.

Mission loss factors are calculated in the same manner as
crew loss factors.

3.3 ABORT CUES AND EDS LIMITS

Automatic abort occurs during the first 120 seconds of flight
when:

a. A vehicle overrate is measured by two of the three EDS
rate gyros in each axis. An overrate is 4 degrees per
second in pitch or yaw, or 20 degrees per second in roll.

b. Two engines are below 90 percent thrust as indicated by
two of the three "Thrust-OK" pressure switches on each
engine.

c. A structural failure occurs between the Instrument Unit
and the Command Module as indicated by two out of three
structural wires.

Manual abort will be initiated by the crew using the abort
cues and EDS limits shown in Table 3-I. Two independent

cues measured and indicated by separate systems are necessary
to prevent false abort.

3-4
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TABLE 3-1 MANUAL ABORT CUES AND EDS LIMITS
FLIGHT
STAGE TIME ABORT CUE EDS LIMIT
(SEC)
0<t<50 Engine Status Lights
Voice Request
S-1C Abort Request Light
50<t<120 Engine Status Lights
Attitude Error 5 deg

Q-Ball Ap

3.2 PSID (100%)

120<t<0BECO

Engine Status Light
L/V Rate Light
S/C Rate Indicator:
Ro11
Pitch or Yaw
Attitude Error

+20 deg/sec
t10 deg/sec
t5 deg*

S-11
S-IVB

Al1l
Times

S/C Rate Indicator:
Roll
Pitch or Yaw
FDO Display
Abort Request Light
L/V Rate Light
Engine Status Lights
Attitude Deviation
Yaw Attitude
Voice Request

+20 deg/sec
*10 deg/sec
Limit Exceeded

20 deg
45 deg

*Recommended EDS 1imit for dual engine out malfunction
occurring after CECO is 20 degrees.
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SECTION 4
MALFUNCTIONED FLIGHT AND ABORT ANALYSIS
The objectives of this analysis are to:

a. Determine that the Emergency Detection System protects
the crew following vehicle malfunctions

b. Determine the mission completion capability following
vehicle malfunctions.

The scope of the analysis is limited to the evaluation of
malfunctioned flight for a G mission with a September 13, 1969,
78.051 degree launch azimuth, and first opportunity translunar
injection.

The points of failure for the various malfunctions considered
in this analysis are shown in Figure 4-1.

Except for the effects of accelerometer malfunctions, all
effects of malfunctions are evaluated for a reference vehicle.
Accelerometer malfunction effects are evaluated for #3-sigma
vehicles.

The AS-507 S-IC pitch polynomial is biased for the average

50 percentile September/October/November winds. For malfunctions
where winds have a significant effect, the vehicle is flown

in design winds with magnitudes based on the maximum 95
percentile September/October wind. The gust is phased with

the malfunction to establish a worst case. For malfunctions
where winds do not have a significant effect, the average 50
percentile September/October wind from 258 degrees is used.
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4.1 SINGLE ENGINE LOSS OF THRUST
4.1.1 Malfunction Description

Single engine loss of thrust malfunctions are categorized as
follows:

a. Thrust loss following a shutdown command initiated by
the thrust OK pressure switches (TOPS). A TOPS shutdown
occurs when some malfunction causes propellant inlet
pressure, and ultimately thrust, to drop below 90 percent
of rated thrust.

b. Thrust loss resulting from an inadvertant shutdown
command initiated by an electrical malfunction.

c. Sudden thrust loss resulting from a catastrophic failure
such as engine explosion.

Failure of a J-2 engine to start during S-II and S-IVB flight
is also considered in this analysis.

Thrust decay characteristics resulting from TOPS dropout are
shown in Reference 5 . TOPS dropout is inhibited until

TBl1 + 14 seconds, after which TOPS dropout occurs automatically
when the thrust decreases below 90 percent of rated thrust.

The S-IC engine-out guidance x-freeze schedule used in this
study is shown in Figure 4-2.

4.1.2 Malfunction Dynamics

Any engine out prior to 0.2 second results in pad fallback.
Any engine out between 0.2 and 0.9 second results in the
vehicle colliding with the holddown posts. Tower collision
occurs for a Number 1 or 2 engine out prior to 5.7 seconds.
Number 4 engine out before 3.5 seconds results in loss of
control in the late high-g region due to vehicle aerodynamic
instability and eventual loss of control authority. The
max-q region occurs between 110 and 130 seconds for these
very early failures. Figure 4-3 shows a time history of
dynamics for a typical early single engine failure.

Figure 4-4 shows that for single engine-out malfunctions in
the high-q region, from approximately 60 to 95 seconds, con-
trollability exists for all 95 percentile September/October
winds. Staging criteria are met for all engineeout cases that
maintain control to cutoff.
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4.1.2 (Continued)

Structural capability is not exceeded at the Command Service
Module joint following TOPS shutdown. Figure 4-5 shows a
typical bending moment history following TOPS shutdown.

Figure 4-6 shows inertial flight path angle versus inertial
velocity envelope for S-IC single engine failures. 1In
deriving envelopes, engine failures are simulated with a
3-sigma performance dispersion for the failed stage. The

100 second free-flight-to-reentry limit is violated for

some S-IC engine shutdown times. However, in most cases

this violation occurs either with an altitude greater than
nominal, or prior to launch escape tower jettison. Figure 4-7
shows the altitude versus surface range envelope for S-1IC
single engine failures.

S-II single engine-out failures do not require abort. S-II

envelopes of flight path angle versus inertial velocity, and

altitude versus surface range for this malfunction are shown
in Figures 4-8 and 4-9 , respectively.

S-IVB engine failure requires staging to the Command Service
Module for abort.

4.1.3 EDS Effectiveness and Crew Safety

Since there are no effective abort cues for early failures
resulting in pad fallback, holddown post collision or tower
collision, it is assumed that these failures result in

crew loss.

The 10 degree per second manual cue provides positive abort
lead times for late high-q aborts resulting from early
failures. These abort lead times are shown in Figure 4-10.

False automatic aborts on the 4 degree per second rate limit
can occur for engines 2 or 3 out in the 75 to 80 second
region.

4.1.4 Mission Completion Capability

Figure 1-8 summarizes orbital capability for S-IC and S-II
single engine-out failures. S-IVB first burn duration as a
function of S-IC and S-II malfunction time is shown in Figures
4~11 and 4-12, respectively. For S-IVB failure, Command
Service Module parking orbit insertion is possible provided
the failure occurs after 605 seconds flight time, and assuming
Service Propulsion System AV capability to be 500 meters per
second.
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4.2 DUAL ENGINE LOSS OF THRUST
4.2.1 Malfunction Description

Loss of thrust engine failures are described in Section 4.1.
When loss of thrust on two adjacent control engines is detected
during S-IC flight, after Automatic Abort Cutoff (AACO) is
enabled, the remaining engines are automatically shut down.

4.2.2 Malfunction Dynamics

Ability to maintain control after failure of two engines in
S-IC or S-II flight depends on which engines have failed and
the times at which they fail. Figures 4-13 through 4-26 show
the failure times which result in loss of control for each
pair of engines. Figure 1-8 summarizes these times for simul-
taneous engine failures.

The regions shown in Figures 4-13 through 4-16 for adjacent
control engines include the effects of early S-IC shutdown.
Significant events during the time from 134.8 seconds to S-IT
ignition are:

EVENT FLIGHT TIME
(SECONDS)
AACO Enable 134.8
CECO & Timebase 2 Set 135.0
Timebase 3 Enable 152.0
OECO & Timebase 3 Set (Nominal) 159.9
S-II at 90% Thrust (Nominal) 164.3

Note that timebase 3 cannot be set until it is enabled 17.0
seconds after CECO. If shutdown occurs at 134.8, there are
21.6 seconds of coast between S-IC shutdown and the time S-IT
reaches 90% of full thrust. This extended coast period,
coupled with a significant attitude rate, causes loss of con-
trol. Figure 4-27 shows typical dynamics for two adjacent
control engines out after CECO.

No loss of control occurs for a single S-IC engine out
followed by a single S-II engine out,

4.2.3 EDS Effectiveness and Crew Safety
During S-IC flight automatic abort is initiated if the thrust
OK pressure switches on two engines drop out. This dual

engine out automatic abort may be inhibited manually by the
crew, but is inhibited automatically just prior to CECO.

4-16
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4.2.3 (Continued)

The recommended time to inhibit automatic abort is 120 seconds
in nominal flight because failure of the CSM joint can cause
crew loss for simultaneous failures prior to this time.

After 120 seconds, manual abort cues are:

a. Engine-out lights

b. Ten degrees/second overrate light and spacecraft rate
indicator

C. Abort request light

An additional abort cue of +20 degrees attitude error is
recommended for two control engines out after CECO. With this
cue, no crew loss occurs for this malfunction.

4.2.4 Mission Completion Capability

Mission completion capability for two engines out is shown in
Figure 1-8 and in Figures 4-13 through 4-27.

For adjacent S-IC control engines out after AACO enable, the
vehicle fails to reach a 75 nautical mile orbit if shutdown
occurs prior to 149 seconds. Loss of thrust acceleration
causes failure of the accelerometer reasonableness test.

The boost navigator uses backup F/M tables to calculate velo-
city resulting in a position error. Three failures of the
accelerometer reasonableness test cause the orbit to have

a perigee less than 75 nautical miles. Therefore, if the
second engine fails prior to 149 seconds, the orbit is unsafe.
A possible method of eliminating the long coast is to begin
timebase 3 at shutdown. This eliminates most loss of control
cases and permits a safe orbit for all cases that do not

lose control.
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4.3 ACTUATOR HARDOVER
4.3.1 Malfunction Description

Actuator hardover is any failure that causes an engine actuator
to either extend or retract to its limit.

4.3.2 Malfunction Dynamics

Analysis shows that during S-IC flight, an actuator fully
extended (engine deflected inboard) gives worst case results
due to the S-IC outboard engine cant of two degrees.

An actuator hardover near the pad does not cause pad fallback,
but any actuator hardover before 0.7 seconds results in an
engine bell colliding with the holddown posts. An actuator
hardover in the positive yaw direction before 3.2 seconds
results in tower collision.

Figure 4-28 shows control capability for an actuator hardover
in the high-q region. An actuator hardover causes loss of
control in the 95 percentile wind rose between 68 and 88
seconds (high-q region). Figure 4-29 shows typical dynamics
for an actuator hardover at 80 seconds. Loss of control
results from excessive aerodynamic moments exceeding the
control capability.

Vehicle tension loads due to the abrupt loss of thrust at
abort cutoff cause structural failure for actuator hardover
malfunctions which require abort between 70 and 100 seconds
flight time. Figure 4-30 shows tension loads for this
malfunction occurring at 80 seconds.

An S-IC actuator hardover occurring between 100 and 107
seconds flight time can cause loss of control due to the
excessive aerodynamic moment and the control gain switching
transient. Figures 4-31 and 4-32 show typical dynamics
and corresponding tension loads, respectively. No control
loss occurs and no staging criteria are violated by an

S-IC single actuator hardover between 108 and 160

seconds.

During S-II flight, there is no loss of control for an actuator
hardover malfunction.

A single S-II actuator hardover inboard causes a large inboard
deflection of another control engine, as shown in Figure 4-33 .
This exposes the base of the S-II vehicle to excessive
radiation from the engine plumes with the following possible
results:

a. Collapse of thrust structure due to induced thermal stress

4-33
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4,3.2 (Continued)

b. Loss of engine thrust and/or S-II/S-IVB separation
capability due to wiring harness damage.

S-II stage damage may occur within 15 to 25 seconds after
actuator hardover.

Any actuator hardover in the S-IVB stage results in tumbling.
4.3.3 EDS Effectiveness and Crew Safety

Since there are no abort cues for early failures resulting
in holddown post or tower collision, it is assumed that these
failures result in crew loss.

The manual abort cues and the automatic abort setting of

4 degrees per second provide positive abort lead times for

all S-IC actuator hardover failures in the high-q region

which require abort. Abort lead times are shown in Figure 4-34.
The figure shows that abort can be unsafe if an explosion
occurs at breakup, but is safe for all explosions occuring

one second after breakup. This results in the probability

of crew loss of 5 times per million flights. In most cases

the manual abort cues, attitude error (+5.0 degrees) and g-ball
AP (3.2 psid), occur before the automatic abort requirement

is reached.

S-IC actuator hardover between 108 and 120 seconds can result
in false automatic abort on overrate. Failures after 120
seconds do not require abort, and no false aborts are indicated.

While there is no loss of control for a single S-II engine
actuator hardover, abort cues for this malfunction are necessary
because of heating problems (Reference 6). These cues are
voice request and the Abort Request Light.

For actuator failures during S-IVB flight, the 10 degree/
second rate limit is the manual abort cue. 2all aborts are
safe.

4.3.4 Mission Completion Capability

Any single actuator hardover in S-IC or S-II which does not
require abort for reasons discussed in Section 4.3.3 has
primary mission completion capability. Actuator hardover
in S-IVB results in mission loss.
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4.4 SINGLE ACTUATOR INOPERATIVE
4.4.1 Malfunction

An actuator inoperative malfunction is any failure which
causes a single actuator to remain at or near null (:0.7
degree) regardless of control commands or external forces
placed on the actuator by the engine.

4.4.2 Malfunction Dynamics

In S-IC and S5-II flight, only minor dynamics due to the
vehicle rotating to a trim attitude result from actuator
failures to null.

In S-IVB flight, an inoperative actuator causes attitude
divergence in the plane of the failed actuator. Figure 4-35
shows a typical case for a null pitch actuator. As the

failed actuator position approaches the limit for this
malfunction (*0.7 degree of null position), vehicle divergence
becomes more rapid.

4.4.3 EDS Effectiveness and Crew Safety

Abort is not necessary for an actuator inoperative during S-IC
and S-II flights. First abort cue for S-IVB first and second
burns is attitude deviation. Second cue is one of the following:

a. Exceeding the 45 degree yaw attitude limit

b. Exceeding the rate limits

c. Ground confirmation of attitude deviation (abort
request light) if received prior to the above.

Abort lead time is important for yaw actuator inoperative
because of the spacecraft platform yaw tumble limit of 90
degrees. Figure 4-36 shows sufficient lead time exists
for abort based upon the above cues.

4.4.4 Mission Completion Capability

Full mission completion capability is maintained for an
actuator inoperative during S-IC and S-II flight.

Abort is required during S-IVB first and second burns if the
malfunction occurs earlier than approximately 30 seconds
before nominal cutoff. If the malfunction occurs after this
time in second burn, full mission completion capability is
maintained; if it occurs before this time, TLI capability is
lost.
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4.5 SATURATED ERROR SIGNAL
4.5.1 Malfunction Description

Any failure that causes an erroneous 15.3 degree attitude error
signal is a saturated attitude error.

4.5.2 Malfunction Dynamics

Figure 1-1 shows the times of malfunction that cause pad
fallback, liftoff interference, and tower collision. Since
the engines are not shut down in the abort sequence before
30 seconds, a saturated attitude error can turn the vehicle
and cause it to impact in the pad area.

Saturated attitude error in S-IC flight causes tumbling at all
flight times. Typical dynamics for this malfunction are shown
in Figure 4-37. Worst case launch vehicle tension loads that
result from a saturated control signal in the high-g region
are shown in Figure 4-38,

Saturation of the pitch or yaw error signal in the S-II stage
initially causes actuators hardover in the affected plane;
actuators hardover cause the vehicle attitude rate to increase
until the control equation (B = agy + aj$) becomes balanced.
This occurs when the actuators approach the null position, and
the attitude rate reaches a maximum value and remains at that
value. Shown below are the values used to calculate the
maximum rate for S-II saturated error signal for the first set
of S-ITI gains:

0 = (1.12)(15.3) + (1.89) duax (pitch and yaw)
éMAX (pitch and yaw) = -9.1 degrees/second

This maximum vehicle rate does not violate the EDS rate limit
of 10 degrees/second. However, the launch vehicle overrate
light may be activated due to the +0.8 degree tolerance on the
t9.2 degrees/second limit setting. Attitude deviation of 20
degrees is exceeded within 5 seconds after time of malfunction.
Saturated roll error signal causes a large engine deflection
in both pitch and yaw planes. The vehicle roll rate reaches a
value which stabilizes the control equation. This value is
calculated below:

0 = (.25)(15.3) + (.2) é (roll)

dmMax (roll) = -19 degrees/second
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4.5,2 (Continued)

Saturated error signal in S-IVB produces the same effects as
those described for the S-II. Because of the difference in
control gains a, and aj, however, the EDS rate limit of 10
degrees/second is exceeded for pitch and yaw malfunctions.

0 = (.81)(15.3) + (.97) $,, (pitch and yaw)
$MAX(pitCh and yaw) = -12.8 degrees/second
0 = (1)(15.3) + (1) 4, (zoll)

$MAX (roll) = =15.3 degrees/second

Figure 4-39 shows S~II and S-IVB pitch rate time histories
resulting from a saturated error signal malfunction.

4,5.3 EDS Effectiveness and Crew Safety

Failures prior to 1.25 seconds result in the engines colliding
with the holddown posts. Crew loss is assumed for these cases,
since there are no valid cues for this situation. Failures

after 1.25 seconds result in aborts on angular rate cues. Abort e
lead times for saturated error signal malfunctions during S-IC
flight are shown in Figure 4-40 . The figure shows a comparison
of actual lead time and required lead time for the most criti-
cal period of flight, from 30 seconds to 90 seconds. Lead times
during the remaining period of S-IC flight are much greater

than required. The figure indicates that if an explosion occurs
one second after breakup, the crew would be unsafe from explo-
sions following aborts occuring between 30 and 65 seconds.

In S-II, a launch vehicle overrate light may be used as a crew
abort cue; however, due to the balancing of the control equa-
tion, as described in Paragraph 4.5.2, a marginal condition
exists for the overrate light cue, necessitating reliance on
ground cues. Abort is by the launch escape system prior to
tower jettison and by the SPS after jettison; abort cues are
the abort request light and FDO limits.

Cues for saturated error signal in S-IVB are the same as those
in S-II. No automatic abort is provided for this malfunction
in S-II or S-IVB stages.

4.5.4 Mission Completion Capability

Saturated error signal in any stage of flight results in mission
loss.
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4.6 SATURATED RATE SIGNAL
4.6.1 Malfunction Description

Any failure that causes a false attitude rate signal of 10
degrees/second to be sent to the flight control computer is
referred to as a saturated attitude rate signal.

4.6.2 Malfunction Dynamics

Saturated rate signal causes loss of control at all times
during S-IC flight. Typical dynamics following this malfunc-
tion are shown in Figure 4-41.

Worst case launch vehicle tension loads that result from a
saturated rate signal in the high-q region are shown in
Figure 4-42.

A saturated pitch or yaw rate signal in the S-II stage causes
the actuators in the affected plane to go hardover and the
attitude error increases until it reaches the limit of 15.3
degrees. The actuators then return the control engines to

a deflection of between 1 to 2 degrees, which results in
uncontrolled tumbling. A similar situation occurs for a
saturated roll rate signal. Figure 4-43 shows a vehicle
pitch rate history for a saturated rate signal during S-I1I
flight.

The effects of a saturated rate signal during S-IVB flight
are similar to those in S-II. Figure 4-43 shows an S-IVB
pitch rate history resulting from a saturated pitch rate
signal.

4.6.3 EDS Effectiveness and Crew Safety

Failures prior to 1.25 seconds result in the engines colliding
with the holddown posts. Crew loss is assumed for these cases,
since there are no valid cues for this situation. Failures
after 1.25 seconds result in aborts on angular rate cues.

EDS abort cues and logic for a saturated rate signal are
identical to those for a saturated attitude error (see
Paragraph 4.5.3).

4.6.4 Mission Completion Capability

Saturated rate signal in any stage of flight results in
mission loss.
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4.7 LOSS OF INERTIAL ATTITUDE
4.7.1 Malfunction Description

An ST-124 inertial platform, located in the Instrument Unit,
is used as the inertial attitude reference during boost.
Platform outputs are monitored by the LVDC and tested for
reasonableness. On successive failures of the reasonableness
test, the LVDC issues a guidance failure discrete. This
discrete lights the LV GUID light on the spacecraft instrument
panel. It also turns on the LV overrate light prior to
automatic abort deactivation.

A backup system permits spacecraft takeover of guidance on
AS-507. Switchover to this backup system is performed
manually upon detection of the LV GUID light.

In this analysis it is assumed that the platform fails in
either the pitch, yaw, or roll plane at a constant angular
acceleration or at a constant drift rate. The gimbal reason-
ableness test is failed when the difference between successive
gimbal readings indicates a rate of change of gimbal angle
greater than 15 degrees per second. Figure 4-44 shows a
typical attitude error time history during the guidance
switchover sequence. Time t] depends on the angular
acceleration of the failed platform. Times between events

are based on the sequence given in Reference 7.

4.7.2 Malfunction Dynamics

The vehicle attempts to follow a failed platform. Thus, a
high acceleration failure results in the vehicle accelerating
rapidly to follow it. Body rates in excess of abort rate
limits, which in this study are assumed to be equivalent to
loss of control, are thus reached in a very short time. 1In
all cases studied, aborts on rate preceded aborts on g-ball
APa. Guidance switchover following platform failures in roll
can be accomplished throughout flight without loss of control.

Figures 4-45, 4-46, and 4-47 show the minimum platform
accelerations that are required to maintain control after
guidance switchover following positive pitch, negative pitch,
and yaw platform failures, respectively.

Sensed attitude error at guidance switchover is not a
dependable abort cue since loss of control can result for

an error as small as 1.0 degree. Figures 4-48 and 4-49 show
the minimum attitude errors that can result at switchover

for cases that lose control. Errors are much larger during
the manual EDS mode because of the 10 degree per second abort
rate limit.
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4.7.2 (Continued)

Minimum accelerations for safe switchover during S-II flight
cannot be defined because no dependable onboard EDS limits
are violated prior to activation of the LV GUID light. S-II
platform failure detection delays cause rapid buildup of
attitude errors to the saturation limit of 15.3 degrees.

This results in actuator trimming at vehicle rates just below
the 10 degree/second rate limit as described in Section 4.5.
Excessive attitude deviations at the time of LV GUID light
activation can cause violation of FDO limits subsequent to
S/C guidance switchover.

The maximum platform failure delay in S-IVB flight without
violating EDS abort limits is approximately 1.7 seconds.

Rate and error control gains in S-IVB flight do not cause
actuator trimming below the EDS rate abort limits as in S-II.

Very slow platform failures that do not violate the
guidance failure tests can result in off-nominal orbits.
Figure 4-50 shows maximum platform drift rates, with
resulting degradation of accelerometer data, that the
vehicle can tolerate and still attain a 75-100 nautical
mile parking orbit. All non-immediate platform failures
with drift rates in excess of those defined in Figure
4-50 and with guidance failure delays exceeding 1.7
seconds in S-IVB result in loss of vehicle.

4,7.3 EDS Effectiveness and Crew Safety

As is shown by lead times in Figure 4-51, existing EDS auto-
matic and manual abort limits are adequate to ensure crew
safety during the transition from primary guidance to S/C
guidance. Slow platform failures in S-~II may not violate
onboard EDS limits. These failures must rely on ground
monitoring of trajectory for violation of FDO limits and
attitude deviations. .

4.7.4 Mission Completion Capability

The launch vehicle can be guided to a safe parking orbit
{perigee altitude greater than 75 NMI) in the S/C backup
guidance mode and TLI can be achieved. Performance losses
due to manual guidance to insertion and translunar injection
are within the AS-507 reserves. An injection is achieved
requiring less than a 305 meter/second (1000 feet/second)
midcourse correction budget. These results are Lased on the
study of Reference 7.
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4.8 LOSS OF ATTITUDE COMMAND
4.8.1 Malfunction Description

Loss of attitude command includes all failures that result in
the attitude command remaining constant or becoming zero at
the time of failure.

4.8.2 Malfunction Dynamics

Loss of roll attitude command can occur at all flight times
without causing mission loss.

Loss of yaw attitude command prior to approximately 350
seconds can result in excessive out-of-plane conditions such
that IGM fails to shut down the S-IVB engine at POI velocity.
This necessitates shutdown by ground command.

Constant pitch attitude command failures cause mission loss
during all flight stages except during the latter portions of
S-IVB first and second burns.

Failure of major loop pitch command to zero causes a one
degree/second pitch-up for boost-to-orbit. This malfunction
causes vehicle loss except for late in S-IVB burns. If the
failure occurs prior to 90 seconds in S-IC flight, rapid
vehicle tumbling results.

Failure of minor loop pitch command to zero causes a 12 degrees/
second pitch-up resulting in loss of control during S-IC flight.
Failures result in large attitude deviations during S-II and
S-IVB burns. Vehicle loss occurs for all failure times.

4.8.3 EDS Effectiveness and Crew Safety

The abort cues for loss of yaw and pitch attitude
command failures are:

a. Attitude deviation
b. Exceeding FDO limits, or ground confirmation of attitude
deviation (abort request light)

Failure of the major loop pitch command to zero prior to 90
seconds results in automatic abort based on 4 degrees/second
pitch rate. Manual abort cues are:

a. Pitch attitude deviation
b. Exceeding FDO limits or ground confirmation of attitude
deviation (abort request light)
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4.8.3 {Continued)

Failure of the minor loop pitch command to zero before 120
seconds flight time results in automatic abort based on 4
degrees/second pitch rate. After that time, manual abort

cues are 10 degrees per second rate, and +5 degrees attitude
deviation during S-IC flight or +20 degrees attitude deviation
during S-II or S-IVB flight. -

False abort or crew loss does not occur for loss of attitude
command malfunctions.

4.8.4 Mission Completion Capability

Mission completion capability exists for loss of roll command
at all flight times. Parking orbit insertion is achieved for
loss of yaw command failures after 350 seconds. Mission loss
occurs for a failure of pitch command to zero in boost-to-orbit.
For a constant pitch command occurring after 580 seconds of
flight time, POI is achieved, but TLI is not possible. 1In
S-IVB second burn, TLI is achieved for failure of pitch command
to zero after 320 seconds from reignition and for constant
pitch command after 270 seconds from reignition.
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4.9 LOSS OF ATTITUDE ERROR SIGNAL
4.9.1 Malfunction Description

Any failure that causes a false attitude error signal of zero
degrees to the flight control computer is referred to as loss
of attitude error signal.

4.9.2 Malfunction Dynamics

For any malfunction time, loss of attitude error causes

attitude divergence. Under pitch or yaw rate control only,

the control system positions the thrust vector such that it
compensates for angular disturbances. This results in a vehicle
rate dictated by the control law. During flight through the
atmosphere, aerodynamic moments resulting from increasing angle-
of-attack cause increasing rate. In the high-q region, un-
controlled tumbling followed by structural failure occurs when
the aerodynamic moment exceeds control authority. During

upper stage flight, attitude divergence is slower and no struc-
tural breakup occurs. Pitch and yaw failures cause loss of
vehicle except for the latter portion of S-IVB burn. No

vehicle loss occurs for roll failures. Figure 4-52 shows
typical dynamics for loss of pitch attitude error in S-IC.

Worst case loads for this case are shown in Figure 4-53.

4.9.3 EDS Effectiveness and Crew Safety
During S-IC flight up to 120 seconds, safe aborts are provided

by the 4 degree per second overrate setting. Manual abort
cues are:

a. 5 degrees attitude error
b. 3.2 psi g-ball pressure (between 50 and 120 seconds)
c. 10 degree per second overrate (after 120 seconds)

Abort cues for failures during S-II and S-IVB flight are:

a. +20 degrees attitude deviation
b. FDO limits or ground confirmation of attitude deviation
(abort request light)

False abort or crew loss is not expected for loss of attitude
error signal malfunctions.

4.9.4 Mission Completion Capability

Loss of attitude error (pitch or yaw) during S-IC, S-II, or
early S-IVB flight results in loss of mission. Parking orbit
insertion is attained for loss of pitch or yaw error after

620 seconds. In S-IVB 2nd burn, full mission completion capabi-
lity exists for loss of pitch or yaw error signal after approxi-
mately 310 seconds from reignition.
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2,10 LOSS OF ATTITUDE RATE SIGNAL
4.10.1 Malfunction Description

Any failure that causes a false vehicle rate indication of
zero degrees per second to the flight control computer is
referred to as a loss of attitude rate signal.

4.10.2 Malfunction Dynamics

Except for roll failures during S-IVB flight, the loss of
attitude rate signal causes oscillatory divergence of vehicle
attitude due to the absence of rate damping. During S-IC

flight in the high-q region, this divergence is aggravated

by the buildup of aerodynamic moments, eventually resulting in
structural breakup. Dynamic variables for a loss of rate

signal at 65 seconds are shown in Figure 4-54 . Loads that
result from this malfunction are shown in Figure 4-55 . Figure
4-56 shows dynamics for loss of pitch rate signal during S-II
flight.

Loss of roll rate signal in S-IVB produces only small attitude
oscillations which do not diverge. This results from the
different method of roll axis control used during S-IVB flight,
namely, the Auxiliary Propulsion System (APS). The roll
attitude of the vehicle is maintained within the 1 degree
deadband of the APS control system as shown in Figure 4-57.

4.10.3 EDS Effectiveness and Crew Safety

During S-IC flight, safe automatic aborts are provided by the

4 degree per second overrate setting and rate indicator. After
automatic abort is disabled, manual abort cues are 10 degrees
per second overrate and 5 degrees attitude error.

Manual abort cues for failures during S-II and S-IVB flight
are the 10 degree per second overrate light and spacecraft rate
indicator.

False aborts or crew loss do not occur for loss of rate
signal malfunctions.

4,10.4 Mission Completion Capability

Loss of attitude rate during S-IC and S-II stage flight results
in vehicle and mission loss. For loss of pitch rate signal

as early as 35 seconds before S-IVB engine cutoff, and loss of
yaw rate signal as early as 100 seconds before S-IVB engine
cutoff, insertion or injection may be achieved with residual
rates less than 10 degrees per second.
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4,11 ACCELEROMETER MALFUNCTIONS
4.11.1 Malfunction Description

Failures considered are those which result in a zero acceler-
ometer reading on a single axis with and without thrust
misalignment and the effects of manual S-IVB shutdown and
navigator update,

The accelerometer output is tested for reasonableness in

each major cycle. When the zero test is enabled (during

each stage mainstage burn) an accelerometer output of less

than [0.05| meters/second is accepted when the vehicle
longitudinal axis is within A0 degrees of normal to that accel-
erometer input axis., A§ is 2 degrees except during S-IC and
S-II burn with a premature outboard engine shutdown, when it
becomes 6 degrees. Backup data is substituted by the acceler-
ometer processing logic when the accelerometer reading is
rejected.

4.11.2 Malfunction Without Thrust Misalignment

Into-orbit X-accelerometer failures for a nominal vehicle
result in perigee altitudes greater than 75 nautical miles.
For +30 and -30 vehicles (30 acceleration profile), X-acceler-
ometer failures result in perigee altitudes greater than 75
nautical miles after 135 and 30 seconds, respectively. The
worst case is a -30 X-accelerometer failure at 2.0 seconds
which results in a perigee altitude of 53.5 nautical miles.
Apogee/perigee altitudes for X-accelerometer failures are
presented in Figure 4-58,

Into-orbit Z-accelerometer failures result in elliptical
orbits with perigees near 100 nautical miles. Figure 4-59
shows apogee and perigee altitudes for nominal, +30, and
-30 Z-accelerometer failures.

Into-orbit Y-accelerometer failures result in nearly circular
100 nautical mile orbits. Yaw steering angle history for a
Y-axis accelerometer failure at 2 seconds after first motion
is presented in Figure 4-60 for boost to insertion-and in
Figure 4-61 for boost to TLI. For this failure, the earth
orbit has a -0.1443 degree error in inclination and a -0.2177
degree error in descending node. The Y-axis velocity error
at TLI is 20 meters/second.

The primary analysis for out-of-orbit accelerometer failures
is for a September 13 (1969) launch date, a 78.051 degree
launch azimuth, and a first opportunity. The velocity error
in the failed axis (from desired cutoff hypersurface) at TLI
for failure times of an X, Y, or Z-accelerometer is presented
for the primary analysis in Figures 4-62 through 4-64. This
error, rather than the perturbhation from the nominal cutoff
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4,11.2 (Continued)

velocity is presented because following an accelerometer
failure, the hypersurface cutoff conditions differ from the
nominal. The velocity components normal to the failed axis
have no error from the targeted cutoff hypersurface other
than normal accelerometer output error. Steering angle
envelopes for all failure times and nominal histories for
pitch angle and yaw angle are presented for the primary
analysis in Figures 4-65 and 4-66, respectively.

The velocity error in the failed axis (see preceding paragraph)
for first opportunity and across the launch window is shown in
Figures 4-67 and 4-68 for X- and Z-accelerometer failures.

Both maximum error and error as a function of failure time

are obtainable from the figures for different days and azimuths.
Velocity error for Y-accelerometer failures varies relative

to how long IGM rides the 2° deadband and has a maximum
predicted error of the order of 50 meters per second.

4,11.,3 Malfunction With Thrust Misalignment

A thrust misalignment with no accelerometer failure has
negligible effect on the flight because a calculation,
Steering Misalignment Correction (SMC), is provided to
correct the steering commands for the null input deflection
error.

The insertion or injection error occurring with a pitch thrust
misalignment concurrent with a pitch plane accelerometer
failure is approximately equal to (*5 meters/second) the error
for the accelerometer failure with no misalignment. The
misalignment causes a slightly revised steering history
resulting in a different boost duration compared with a
similar accelerometer failure with no misalignment. This
boost duration change ranges up to 2 seconds at POI, 3¢

thrust misalignment in all three stages for into-orbit
accelerometer failures, and 0.5 seconds at TLI, for S-IVB
second burn failures.

The reason for these effects is that, while the misalignment
causes the contrcl system to set up a delta between the
commanded (x) and actual (0) attitudes with which to zero out
the misalignment, i.e.,

B = Bo + a(b-x) + bo
where: a = altitude gain

b = rate gain

¢ = vehicle body rate

B = engine deflection

Bo = thrust misalignment,
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4,11.3 (Continued)

the navigator sees the backup acceleration resolved through

the actual attitude angles. The control system (with or
without a misalignment) maintains the thrust through the
vehicle CG. The angular error between this thrust acceleration
and axial acceleration and also the magnitude error between

the backup and actual acceleration is the same with or without
a misalignment.

The insertion error with a yaw thrust misalignment concurrent
with a Y-axis accelerometer failure depends on how long the 2°
accelerometer output zero test limit is followed. A +3¢
thrust misalignment causes up to 65 m/second additional error
in Y at POI compared with a similar accelerometer failure with
no misalignment and up to 0.5 second extension of the S-IVB
first burn duration. The injection error with the same
vehicle condition results in an additional error in Y at TLI
of up to 5 m/second and up to 0.5 second extension to the
S-IVB second burn. If a navigator update is used to correct
an into-orbit Y error, then the into-and out-of-orbit Y errors
are not additive. Note that the 2 degree zero test deadband
will also affect certain day/azimuth S-IVB second burn ¥ and
Z-accelerometer failures when the vehicle major axis lies
within 2 degrees of the failed axis during second burn.

4.11.4 Manual S-IVB Shutdown

A manual shutdown on inertial velocity can reduce overspeed
at POI and TLI. The manual cutoff at POI will only reduce
the overspeed produced by an early Z-axis accelerometer
failure. X-axis accelerometer failures have more of a flight
path angle error than an overspeed and a manual cutoff does
not reduce their POI error. Similarly, Y-axis failures have
an orbit inclination error and little overspeed. A navigator
update is required in EPO to correct disagreement between the
actual and navigator state vectors.

At TLI with an LVDC cutoff, the overspeed is dependent on the
S-IVB reignition angle (position vector in the X/Z plane) and
the failure time (i.e., the component of the FOM-FOMC error in
the failed axis). The overspeed reduction achieved by a
manual shutdown on inertial velocity is dependent on the
direction of the total acceleration immediately prior to TLI.
The inertial velocity specified for the manual shutdown is
obtained from a realtime S-~IVB second burn simulation from

the achieved EPO.

4.11.5 EDS Effectiveness and Crew Safety
Abort may be required for X-axis accelerometer failures prior

to 30 seconds after first motion on a -30 vehicle and 135
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4,11.5 (Continued)

seconds after first motion on a +30 vehicle. The abort cues
are FDO limits and abort request light. A Mode IV abort is
required.

4.11.6 Mission Completion Capability

Mission completion capability for accelerometer failures
is shown in Figure 1-9; mission continuance will be a real
time decision. All out-of-orbit accelerometer failures
result in perturbed TLI injection requiring midcourse
correction and/or manual cutoff.
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4,12 PU SYSTEM MALFUNCTIONS
.12.1 Malfunction Description

The S-II and S-IVB Propellant Utilization (PU) System mal-
functions are those in which the PU valve fails to follow

the flight plan. No malfunctions are considered to occur be-
fore PU unlock. All valves fail simultaneously to some

fixed position for remainder of flight.

4.12.2 Malfunction Dynamics

The primary effects of S-II PU malfunctions are trajectory
deviations and perturbed S~IVB first burn times. Trajectory
for PU failures to null and low stop exceed the nominal at
S-IVB insertion into parking orbit. S-IVB PU malfunctions
cause less deviation from the nominal trajectory than S-II
PU malfunctions.

4.12.3 EDS Effectiveness and Crew Safety

Aborts are not required for PU malfunctions, and no false
aborts are initiated.

4.12.4 Mission Completion Capability

Parking orbit insertion can be achieved for all PU mal-
functions in boost-to-orbit. Translunar injection (TLI) can-
not be achieved for PU malfunctions to null position or low
stop occurring in the early portion of S-II flight. For a
first opportunity reignition, PU malfunctions to the low

stop in the later portion of the S-IVB first burn and all of
the S-IVB second burn achieve TLI. For a second opportunity
reignition, PU malfunctions to the low stop in S-IVB first
burn and the early portion of S-IVB second burn will not
achieve TLI. Failure to achieve TLI.is due to propellant
depletion. Table 4-I presents AS-505 preflight pre-

dictions applicable to AS-507. Failure times indicated are
the earliest for which TLI may be achieved. "N/A" in the
table indicates the PU valve is in its normal operating posi-
tion. "All" in the table indicates vehicles with failures

to the corresponding valve position have TLI capability for
all failure times.
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TABLE 4-1. TLI CAPABILITY FOR PU MALFUNCTIONS

FAILURE TO FAILURE T0O

STAGE NULL LOW
POSITION STOP
S-11 340 Sec 475 Sec
S-IVB First Opportunity
First Burn N/A 370 Sec
Second Burn Al1 Al1l
S-1VB Second Opportunity
First Burn N/A No TLI
Second Burn N/A 14,610 Sec
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4.13 LOSS OF ONE APS MODULE -
.13.1 Malfunction Description

Any nozzle firing failure in the APS system which causes lack
of APS response to firing commands in the S-IVB stage is de-
fined as APS System Failure. Other failures upstream of the
control computer output are not considered here.

Loss of one APS module is defined as the failure of all
thrusters in one APS module to fire when commanded to do so.

APS ullaging failures are defined as malfunctions resulting in
failure to turn on an APS ullage thruster. Only single failures
are considered.

4.13.2 Malfunction Dynamics

Loss of one APS module in S-IVB first or second burn will not
result in abort conditions; pitch and yaw control are main-
tained by the main engine and the remaining module provides
sufficient roll torque to correct for small perturbations.

Loss of one APS module during coast flight is cause for abort,
since control about the pitch axis exists in only one direction.
This malfunction during S-IVB coast will also cause a gradual
roll/yaw attitude divergence.

Loss of one APS ullage motor does not cause loss of control.
4,.13.3 EDS Effectiveness and Crew Safety

Loss of one APS module during parking orbit produces

loss of control in the pitch axis. Since attitude divergence
is slow, APS failure may not be detected immediately. The
abort cues are +20 degrees attitude deviation and ground
requested abort. All aborts are safe aborts.

False abort or crew loss does not occur for loss of one APS
module.

4,13.4 Mission Completion Capability

While loss of a single APS module during $-IVB first burn
allows a nominal POI, an abort during parking orbit is
required. Abort is required if this malfunction occurs
during parking orbit. Loss of one APS module during S-IVB
second burn does not prevent TLI; subsequent to TLI, however,
no pitch control is available. This lack of control results
in uncorrected vehicle body rates. : :
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4,14 LOSS OF BOTH APS MODULES

4,.14.1 Malfunction Description

"Loss" is defined as in Paragraph 4.13.1, except both APS
modules are affected.

4.14.2 Malfunction Dynamics

Loss of both APS modules in S-IVB powered flight produces loss
of roll control.

Loss of both APS modules during S-IVB parking orbit coast
causes total loss of attitude control and requires an abort.

Although TLI is attained for loss of both APS modules during
S-IVB second burn, rates continue uncorrected, presenting
difficulties for transposition, docking, and extraction (TD&E).

4.14.3 EDS Effectiveness and Crew Safety

Loss of both APS modules during S-IVB powered flight results
in loss of roll control. Excessive roll attitude is used as
a cue for manual abort.

For both APS modules out during coast flight, the S-IVB is
uncontrollable, but divergence is slow. Since body rates are
small, this malfunction may not be detected immediately. Abort
should be initiated before platform gimbal limits are exceeded.
Abort cues for loss of both APS modules are excessive attitude
deviation and abort request light.

False abort or crew loss is not expected for loss of both APS
modules.

4,14.4 Mission Completion Capability

Loss of both APS modules during S-IVB first burn or parking
orbit coast results in mission loss. During S-IVB second burn,
this malfunction will not prevent TLI; but the S-IVB will

be uncontrollable after TLI, and capability to perform the

TD&E is questionable.
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4.1" SEQUENCING AND STAGING MALFUNCTIONS

1.15.1 Malfunction Description

A sequencing malfunction is defined as any malfunction that
causes an erroneous seguence Or no sequence to occur, or

a sequence that occurs at the wrong time. Sequencing failures
studied are:

Early gain switching
b. Late (or no) gain switching.

A staging malfunction is defined as any malfunction that
causes premature staging, lack of staging, or complications
during staging. Those studied include:

a. Lack of retrorocket firing .
b. Lack of (or partial) S-IC first plane separation
c. Lack of (or partial) S-II second plane separation
d. Lack of (or partial) S-II/S-IVB plane separation
e. Failure to jettison the Launch Escape Tower (LET)

4.15.2 Malfunction Dynamics

An early control system gain change (prior to 85 seconds)
results in vehicle loss because the vehicle is unstable in
the max-q region with low gains. -

A late gain change does not require abort even if no gain
change occurs during S-IC flight. The vehicle becomes un-
stable due to slosh, but more than 50 seconds of instability
are required to cause loss of control.

Failure to achieve S-IC/S-II staging requires abort since
parking orbit insertion cannot be attained by staging
directly to the S-IVB.

One retrorocket out at S-IC/S-II or S-II/S-IVB staging does
not require abort. Failure to issue firing commands to the
S-=IC or S-II retrorockets produces delayed stage separation
and a possible period of local deformation where the stages
remain in contact after they have been severed. Thrust
tailoff forces of the engines tend to keep the stages in
contact; precise structural consequences are not known,

A sequencing failure affecting time of gain change does not
cause an abort during S-II flight,
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4,15.2 (Continued)

Sequencing failures or separation device malfunctions which
prevent jettison of the S-IC/S-II interstage cause the thermal
environment limits in the S-II boattail area to be exceeded.
Engine shutdown and abort are required prior to generation of
excessive temperatures. Due to the short time between nominal
interstage jettison and exceeding termperature limits, the
mission rule presented in Reference 6 (abort prior to

TB3 + 52 seconds) is recommended.

Failure to jettison the launch escape tower introduces no
stability problem during S-II and S-IVB flight. The launch
escape tower and boost protective cover prevent spacecraft/
lunar module transposition and docking. Reentry is not
possible since the drogue and main parachutes cannot be
deployed. Procedures are required to allow the crew to remove
the LET and boost protective cover during earth parking orbit.

Failure to achieve S-II/S-IVB staging due to a failure to
issue the sequence command requires abort.

An early gain change or absence of one during S-IVB second
burn does not require abort.

4.15.3 EDS Effectiveness and Crew Safety
Table 4-IIcontains the abort logic and limits for all sequencing

and staging malfunctions considered in this analysis. All
abort lead times are adequate for crew safety.

False abort or crew loss does not occur for sequencing and
staging malfunctions.

4.15.4 Mission Completion Capability

Mission completion capability for sequencing and staging
malfunctions is given in Column 4 of Table 4-I.
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4.16 S~II/S-IVB EARLY STAGING
4.16.1 Description

Manual early staging to alternate timebase 4 sequence can
be initiated between thrust OK arm, 6.7 seconds after
timebase 3, and propellant depletion cutoff arm, 334.2
seconds after timebase 3.

4.16.2 Limits

The largest body rate from which early staging can be initiated
and not fail the fine gimbal resolver test is approximately 2
degrees/second. The rate from which successful S-IVB recovery
can be anticipated after early staging should not exceed

3 degrees/second.

4.16.3 Mission Completion Capability

S-II/S-IVB early staging capability is shown in Figure 1-8.
S-IVB burn duration as a function of the time of early staging
is presented in Figure 4-69,

4.16.4 African Continent Impacts

Table 4-III details the intervals of S-II/S-IVB early staging
times for a nominal vehicle which result in African continent
impact. These intervals are projected from AS-507 data and
AS5-505 results.

TABLE 4-1IT S-I1I1/S-1VB EARLY STAGING CONDITIONS
FOR AFRICAN CONTINENT IMPACTS

LAND IMPACT STAGING GEQCENTRIC INERTIAL INERTIAL FLIGHT
AREA TIMET RADIUS VELOCITY PATH ANGLE
SECONDS METERS M/SEC DEGREES

72° AZIMUTH 330 6545526, 3995, 3.983

WEST COAST

(CANARY

ISLANDS)

EAST COAST 375* 6555080. 4516. 1.936
50° AZIMUTH 330 6546123, 4014, 3.973

WEST COAST

(CAPE VERDE

ISLANDS)

EAST COAST 375+ 6555673, 4536. 1.918
108° AZIMUTH 365 6553990. 4392. 2.303

WEST COAST

EAST COAST 375* 6555628. 4516. 1.922

+NOTE: . These times are given to the nearest 5 seconds.
*Achieves parking orbit.
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SECTION 5
COMMUNICATIONS ANALYSIS FOR ABORT AND ALTERNATE MISSIONS
5.1 COMMUNICATIONS ANALYSIS BACKGROUND

The objective of this study is to provide an assessment of the
tracking and communications capability, for a defined sur-
veillance network (Table 5-I), for abort and alternate missions
within the capability of the AS-507 vehicle. This study
complements analyses presented in Boeing Document D5-15697-507,
"Tracking and Telemetry Design Analysis for AS~507 (G Mission),"
dated June 20, 1969. Abort and alternate mission trajectories,
resulting from vehicle system or subsystem malfunctions,

result in deviations from the nominal communications capability
such that additional data are required for contingency planning.

In the referenced document, an extensive analysis of the
tracking and communications capability is presented for the
nominal AS-507 G Mission based upon the AS-507 Launch Vehicle
Operational Flight Trajectory. A summary of the nominal
0-degree elevation angle surveillance for the Earth Parking
Orbit is given in Table 5-II for the 78.051~-degree launch
azimuth on September 13, 1969.

The nominal tracking and communications analysis for the
launch and parking-orbit flight phases is based upon the
AS5-506 Launch Vehicle Operational Flight Trajectory. The
AS-507 Launch Vehicle Operational Trajectory during those
flight phases does not show any appreciable differences, in
regards to geometrical surveillance, from AS-506 trajectory
data. Computer runs were made using the AS-507 Operational
Trajectory to verify the applicability of the AS-506
surveillance data. The alternate mission analysis is based
on the AS-507 launch vehicle.

An abort mission, for purposes of this analysis, is a mission
that results when any vehicle system or subsystem failure
prevents the launch vehicle from achieving insertion into a
parking orbit; therefore, the communications analysis of the
abort missions is restricted to the launch and boost-to-
parking-orbit phase of flight.

An alternate mission is, for purposes of this analysis, any
mission resulting from a system or subsystem failure that
permits insertion of the launch vehicle into an earth orbit.
Alternate missions are analyzed during both the boost and
earth parking orbit flight phases to develop surveillance
data for use in an overall assessment of the tracking and
communications capability for the AS-507 G Mission.
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5.1 (Continued)

A detailed tracking and communications analysis for all of
the possible abort and alternate missions to the detail
provided by the referenced AS-507 G Mission nominal
surveillance analysis is impractical. To satisfy the need
for displaying meaningful data for the various possible
abort and alternate missions, analyses are conducted to
identify fundamental tracking properties applicable to the
various flight phases.

A special surveillance analysis is included in this section
that provides surveillance for both the instance of no S-IVB
stage restart ignition (for variable azimuth across the launch
window) and for the instance of an early stage cutoff for
September 13, 1969, second TLI opportunity and 78.05l-degree
launch azimuth.

No allowances are made in this study for the effects that
result from a degradation in antenna look-angles. Any
degradation in antenna look-angles may result in a change in
the capability to communicate with the launch vehicle.

5.2 ANALYTICAL PROCEDURES AND STUDY LIMITATIONS

During the launch and boost-to-parking-orbit flight phase,
continuous tracking and communications surveillance is
available for all defined alternate mission trajectories.
Because of the diversity of the altitude/surface range
profiles for abort trajectories, each abort condition must be
considered as an individual communication problem; therefore,
specific abort cases are not presented in this analysis.

Any trajectory with an altitude/surface range profile above
the surface of surveillance defined by the minimum altitude/
surface range contours shown in Figure 5-1 is under
surveillance continuously by one or more Eastern Test Range
stations. This surface of surveillance is generated by
joining the points of intersection of the adjacent tracking
and communications station visibility cones of the MILA,
Grand Bahama, Grand Turk, Antigua, and Bermuda ground
stations. Limited surveillance is available below this
surface, but continuous surveillance is unavailable.

The AS-507 G Mission nominal altitude/surface range profile
and the minimum altitude/surface range profile for an
alternate mission, resulting from an S-IC stage dual-engine
shutdown at 90 seconds after liftoff, are presented in
Figure 5-1 to indicate nominal and typical worst-case
malfunction flight profiles that achieve a parking orbit.
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5.2 (Continued)

The data of Figure 5-1 are valid for a launch azimuth
variation from 72 degrees to 108 degrees east of north. The
nominal and S-IC dual-engine-out altitude/surface range
profiles shown are valid across the launch azimuth spread.

Use of the surveillance contours defined in Figure 5-1 does
not identify specific acquisition and loss times or parameters
for each possible abort or alternate mission. Analysis has
shown, however, that coverage for all alternate missions
resembles predictions made for a nominal flight during the
boost flight interval.

The earth parking orbits that result from alternate missions
are classified into the following categories:

a. Alternate missions that achieve a near-nominal éarth
parking orbit,

b. Alternate missions that achieve an off-nominal
elliptical parking orbit.

The alternate mission trajectories that achieve a near-
nominal earth parking orbit result from propulsion system

or subsystem failures that reduce the vehicle's overall
performance capability. These trajectories are discussed in
detail in Paragraph 5.3.

Alternate missions that achieve an elliptical earth parking
orbit are the result of accelerometer malfunctions. An
analysis of the alternate missions, resulting from acceler-
ometer malfunctions, is presented in Paragraph 5.4.

The surveillance analysis applicable to the particular
instance where no S-IVB second burn occurs consists of extend-
ing the nominal earth parking orbits for the AS-507 G Mission.
Additional analyses are provided to define surveillance for
September 13, 1969, 78.051-degree launch azimuth, second
opportunity for the special instance of an S-IVB stage early
cutoff. This analysis is discussed in Paragraph 5.5.

A study of station acquisition azimuths is included to augment
the station acquisition aid systems that are limited to a 20-
degree-wide antenna pattern. This study includes a presenta-
tion of all acquisition azimuths that deviate more than 10
degrees from the corresponding nominal azimuth during the
critical first orbit after insertion.
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5.3 SURVEILLANCE FOR NONACCELEROMETER MALFUNCTIONS

Alternate missions resulting from nonaccelerometer malfunctions
are defined in Table 5-III and are classified into the
following types:

a. Single and dual S-IC and S-II stage engine malfunctions.

b. Malfunctions resulting in early staging from the S-II
to the S-IVB stage.

The earth parking orbits resulting from the defined failures
lie in the plane of, and closely approximate, the nominal
earth parking orbit as defined by the AS-507 G Mission
operational trajectory. The groundtracks of these orbits
are given in Figures 5-2, 5-3, and 5-4. Each of the
nonaccelerometer failures, however, achieves earth parking
orbit insertion at a later flight time than does the nominal.

The difference in station acquisition and loss times, obtained
by comparing a delayed-nominal orbit with the corresponding
nominal parking orbit, is referred to as delta time. The
delta time that is related to the time that a nonaccelerometer
malfunction occurs is approximately constant from station to
station for any orbit or for any launch azimuth.

The delta time for a particular time of nonaccelerometer
malfunction is computed by recording the time and longitude
after the malfunctioning vehicle has achieved orbital
insertion and by differencing this time with the time at
which the corresponding nominal vehicle reaches the same
longitude in the nominal parking orbit.

The delta times computed for nonaccelerometer failures that
occur between liftoff and nominal S-II cutoff are provided
in Figure 5-5. The acquisition and loss times for a delayed
parking orbit are determined by adding the delta time from
Figure 5-5 to the nominal acquisition and loss times of
Figures 5-6, 5-7, and 5-8.

The endpoints (designated by solid lines) of the delta time
curves for the nonaccelerometer failures shown in Figure 5-5
represent the extent of the trajectory data available for
analysis. The analysis of the engine-out and early staging
malfunctions begins with the earliest malfunctioning vehicle
that achieves parking orbit insertion.

The dashed lines on the delta time curves in Figure 5-5
represent an extrapolation from the last actual trajectory
data available to the known terminal condition.
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5.3 (Continued)

In this analysis, the delta time is computed for the first
orbit and is a good approximation of the delta times for the
second and third orbits.

No significant acquisition azimuth deviations from the
nominal occur for the nonaccelerometer malfunctions.

5.4 SURVEILLANCE FOR ALTERNATE MISSIONS RESULTING FROM
ACCELEROMETER FAILURES

The specific measurements normally supplied to the guidance
and control system by an accelerometer are replaced by
guidance-computed estimates when an accelerometer malfunction
occurs. The errors in these guidance estimates, in general,
cause inplane overspeed and flight-path-angle errors at
orbital insertion. The resultant orbits are characterized

by apogees varying between 185 and 1815 kilometers and by
perigees varying between 99 and 187 kilometers.

The apogee and perigee altitudes resulting from X- and
Z-accelerometer malfunctions are described in Figures 4-58
and 4-59. These altitudes are a function of accelerometer
malfunction time during the boost phase for both a nominal
and +30 performance vehicle. The property of most
importance to the tracking and communications analysis

is that malfunctions during boost result in earth parking
orbits that have related orbital properties.

The Z-accelerometer malfunctions have related parking orbits
since the resultant perigees are approximately a single -
valued function of apogee. The X-accelerometer malfunctions
do not have this property, and the surveillance data are
presented as a function of X-accelerometer time of
malfunction

Station acquisition and loss flight time histories for
X-accelerometer failures occurring on a nominally performing
vehicle are presented in Figures 5-9 through 5-12. These
data are presented as a function of failure time after
liftoff. The data of these figures approximate the
acquisition and loss times for the 30 performance vehicle
for malfunctions occurring after 60 seconds. An early
X-accelerometer malfunction occurring on a -3¢ performance
vehicle results in an abort situation.
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5.4 (Continued)

A 10-degree deviation in acquisition azimuth from the nominal
surveillance occurs only for Honeysuckle. The acquisition
azimuth as a function cof time of X-accelerometer malfuncticn
is described in Figure 5-13 for this surveillance station.

Station acquisition and loss flight time histories are
presented for Z-accelerometer {both +3¢ and nominally
performing vehicles) failures as a function of orbital
apogee altitude. (See Figures 5-14 through 5-17.) These
data are related to an accelerometer malfunction as follows:

a. The apogee altitude is determined for a malfunction at a
specific time during launch by using the data of
Figure 4-59.

b. The station acquisition and loss time is determined
as a function of the apogee altitude by using the data of
Figures 5-14 through 5-17.

A l0-degree deviation in acquisition azimuth from the nominal
surveillance occurs for the Tananarive, Carnarvon, Honeysuckle,
and Goldstone tracking stations. The acquisition azimuths for
these stations is provided as a function of apogee in

Figure 5-18.

5.5 S-IVB SECOND~-BURN EARLY CUTOFF SURVEILLANCE ANALYSIS

The analysis for the S-IVB second-burn early cutoff is divided
into two separate studies. The first study concerns the
instance of no S-IVB stage restart ignition and is the most
likely malfunction of this kind. The surveillance analysis
for the no-restart stage ignition is provided across the
launch window for the launch-azimuth variation from 72 degrees
to 108 degrees. The data provided in Figures 5-7, 5-8, and in
Figures 5-19 through 5-21 define the surveillance for the in-
stance of no S-IVB stage reignition and is based upon the con-
tinuation of the earth parking orbits for the AS-507 G Mission.

The second analysis describes the type of tracking and com-
munications surveillance expected for a typical launch day,
azimuth, and TLI opportunity for an S-IVB early cutoff
occurring at any instant during the second burn. This par-
ticular study was completed for the September 13, 1969,
second TLI opportunity and for a 78.051-degree launch azimuth.
(See Figure 5-22.) These data are shown only to 19,000
seconds because of the difference in the orbital period for
orbits resulting from the different failure times. The
acquisition azimuths for an early S-IVB second burn cutoff
for the Canary Island and Madrid stations deviate by more
than 10 degrees from the nominal second-burn and post-TLI

5-6
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5.5 (Continued)

surveillance. The acquisition azimuths for these two
stations as a function of time of malfunction during the
second burn are given in Figure 5-23. Acquisition azimuths
for the special instance where no S-IVB stage second burn
occurs is provided in Table 5-II.

The Y-accelerometer malfunctions result in out-of-plane

errors at insertion. A limited analysis of these malfunctions
is represented by the station acquisition and loss history

for a typical worst case. (See Table 5-IV.) No acquisition
azimuth deviations exceed 10 degrees from the nominal
surveillance.
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TABLE 5-I. SURVEILLANCE NETWORK USED FOR AS-507 G MISSION
COMMUNICATIONS ANALYSIS FOR ABORT AND ALTERNATE
MISSIONS
STATION SYSTEM| SYMBOL | GEODETIC LONGITUDE HEIGHT
LATITUDE EAST ABOVE
ELLIPSOID
(DEGREES) (DEGREES) (METERS)
MERRITT ISLAND|CCS, MIL 28.508272|- 80.693417 10.00
GRAND BAHAMA ggs, GBM 26.632857 |- 78.237664 5.00
BERMUDA E?S, BDA 32.351286|- 64.658181 21.00
ANTIGUA ggs, ANT 17.016916}|~- 61.752849 43.00
INSERTION SHIP ggs, INS 25.00000 |- 49.000000 0.00
CANARY ISLAND ggs, CYI 27.764536 (- 15.634814 173.00
IASCENSION ggs, ASC - 7.955056(- 14.327578 562.00
MADRID ggs MAD 40.455358|- 4.167394 825.00
TANANARIVE ™™ TAN -19.000797 47.315053] 1322.30
CARNARVON Cccs, CRO -24.907592| 113.724247 58.00
GUAM ggs, GWM 13.309244| 144.734414 127.00
HONEYSUCKLE g?s HSK -35.597222| 148.979167| 1097.00
HAWATI CCs, HAW 22.,124897|-159.664989( 1150.00
GOLDSTONE ggs GDS 35.341694(-116.873289 965.00
GUAYMAS ccs, GYM 27.963206{-110.720850 19.00
CORPUS CHRISTI ggs, TEX 27.653750}~ 97.378469 10.00
™™

NOTE:

ALL GEODETIC DATA ARE REFERENCED

TO THE FISCHER
ELLIPSOID.
CCS — COMMAND AND COMMUNICATIONS SYSTEM

T™M — TELEMETRY
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Table 5-I1I, ALTERNATE MISSIONS ACHIEVING A NOMINAL
PARKING ORBIT

SYMBOLS USED ON TYPE OF FAILURE
ALL DATA PLOTS

Single-engine-out (Engine No. 1)

S-IC 1 EO failure in the S$-IC stage.

Single-engine-out (Engine No. 2)
failure in the S-IC stage.

Dual-engine-out (Engines No. 1 and

S-IC 1+5 EO No. 5) failure in the S-IC stage.

Dual-engine-out (Engines No. 2 and

- 2+4 E
s-1C ° No. 4) failure in the S-IC stage.

Single-engine-out (Engine No. 1)

S-II 1 EO failure in the S-II stage.

Dual-engine-out (Engines No. 1 and

S-II 1+5 EO No. 5) failure in the S-II stage.

Dual-engine-out (Engines No. 1 and

5~IT1 1+4 EO No. 4) failure in the S-II stage.

Dual engines out (Engines No. 2 and

S-II 2+4 EO No. 4) on the S-II stage.

Early staging of the S-II to the

S-II/S-1IVB ES S-1VB stage.
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